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Abstract

We develop a novel computerized real effort task, based on moving sliders across a screen,

to test experimentally whether agents are disappointment averse when they compete in a

real effort sequential-move tournament. We predict that a disappointment averse agent, who

is loss averse around her endogenous choice-acclimating expectations-based reference point,

responds negatively to her rival’s effort. We find significant evidence for this discouragement

effect, and use the Method of Simulated Moments to estimate the strength of disappointment

aversion on average and the heterogeneity in disappointment aversion across the population.
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1 Introduction

Disappointment at doing worse than expected can be a powerful emotion. This emotion may
be particularly intense when the disappointed agent exerted effort in competing for a prize,
thus raising her expectation of winning. Furthermore, a rational agent who anticipates possible
disappointment will optimize taking into account the expected disappointment arising from her
choice.

In this paper we use a laboratory experiment to test whether agents are disappointment
averse when they compete in a real effort tournament. In particular, we test whether our
subjects are loss averse around reference points given by endogenous expectations which adjust
to both an agent’s own effort choice and that of her rival. Pairs of subjects complete a novel
computerized real effort task, called the “slider task”, which involves moving sliders across a
screen. The First Mover completes the task, followed by the Second Mover, who observes the
First Mover’s effort before choosing how hard to work.1 A money prize is awarded to one of the
pair members based on the pair’s relative work efforts and some element of chance which we
control. After each repetition, the subjects are re-paired. We impose probabilities of winning the
prize which are linear in the difference in the agents’ efforts, so the marginal impact of a Second
Mover’s effort on her probability of winning does not depend on the effort of the First Mover she
is paired with. Therefore, if agents care only about money and their cost of effort, the Second
Mover’s work effort should not depend on the effort of the First Mover. However, as predicted
by our model of disappointment aversion, the experimental data show a discouragement effect :
the Second Mover shies away from working hard when she observes that the First Mover has
worked hard, and tends to work relatively hard when she observes that her competitor has put
in low effort. Thus First and Second Movers’ efforts are strategic substitutes.

Our primary contribution is empirical. First, we offer evidence consistent with disappoint-
ment aversion from a reduced form linear random effects panel regression. More substantively,
we exploit the richness of our experimental data set to estimate the parameters of a structural
model of disappointment aversion using the Method of Simulated Moments. This allows us
to estimate the strength of disappointment aversion on average and the extent of heterogene-
ity in disappointment aversion across the population. Goodness of fit analysis shows that the
estimated model fits our data well.

Together with random variation in the monetary prize across pairs of subjects, the design of
our slider task generates sufficient variation in behavior to enable us to estimate the structural
parameters of our model of disappointment aversion. In particular, the slider task gives a finely
gradated measure of performance over a short time scale. As the task takes only two minutes
to complete, we can collect repeated observations of the same Second Movers facing different
prizes and First Mover efforts, while the fineness of the performance measure allows us to observe
accurately how Second Movers respond to different prizes and First Mover efforts. The resulting
panel data permit precise quantification of the distribution of the cost of effort and the strength
of disappointment aversion across agents in the population.

The formal model that we test is a natural extension of disappointment aversion to situations
1We use a sequential tournament to give clean identification, rather than because most competitive situations

involve sequential effort choices.
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in which agents compete. Models of disappointment aversion (e.g., Bell, 1985; Loomes and
Sugden, 1986; Delquié and Cillo, 2006; Kőszegi and Rabin, 2006, 2007) build on the idea that
agents are sensitive to deviations from what they expected to receive; in particular, agents
are loss averse around their expected payoff so losses relative to this expectation are more
painful than equal-sized gains are pleasurable. We model expectations-based reference points
as adjusting to an agent’s own effort choice and that of her rival: in the terminology of Kőszegi
and Rabin (2007) they are choice-acclimating. The endogeneity of an agent’s reference point is
crucial: with loss aversion around a fixed reference point, even if given by a prior expectation,
a Second Mover will continue to disregard First Mover effort.

Our empirical results thus address two important open questions in the literature on reference-
dependent preferences: (i) what constitutes agents’ reference points?; and (ii) how quickly do
these reference points adjust to new circumstances? Our analysis provides evidence that when
agents compete they have reference points given by their expected monetary payoff and that an
agent’s reference point adjusts essentially instantaneously to her own effort choice and that of
her competitor.

Abeler et al. (2009) also provide reduced form evidence consistent with choice-acclimating
reference-dependent preferences in the context of effort provision. Abeler et al. run a laboratory
experiment in which subjects have a 50% chance of being paid piece-rate and a 50% chance of
receiving a fixed payment, and show that effort increases in the fixed payment. To the best of
our knowledge, however, we are the first to estimate the strength of loss aversion around choice-
acclimating reference points when agents exert effort. Furthermore, we are able to leverage our
structural analysis to provide evidence that the expectation which acts as the reference point
adjusts to the agent’s own choice of effort. In contrast, Abeler et al. (2009) do not distinguish
between their choice-acclimating model and a more parsimonious model in which the reference
point adjusts to the fixed payment but not the agent’s actual effort choice. Finally, we provide
evidence that choice-acclimating reference points are important in a different context to Abeler
et al., namely one in which agents work to influence their probability of success. Such situations
are common: in labor markets, workers often exert effort to increase their chances of winning
promotions and bonuses; while agents also work to make success more likely in sports contests,
examinations, patent races and elections.

A number of recent papers find evidence of reference-dependent preferences when agents ex-
ert effort in the field. For example, Camerer et al. (1997), Crawford and Meng (2009) and Doran
(2009) analyze cab driver data, Fehr and Götte (2007) look at bike messenger behavior, and
Pope and Schweitzer (2009) consider professional golf players. In contrast to our model, in these
papers the reference point is taken to be fixed when the agents choose how hard to work. Evi-
dence of expectations-based reference points in the absence of effort provision includes Loomes
and Sugden (1987), who study choices over lotteries, Post et al. (2008), who find evidence that
reference points adjust during the course of the game show ‘Deal or No Deal’, and Card and Dahl
(2009), who show that the probability of domestic violence when an NFL football team loses
depends on the extent to which the loss was expected. The psychology literature also supports
the thesis that agents’ emotional responses to the outcomes of gambles include disappointment
and elation, that agents anticipate these emotions when choosing between gambles and that ex-
erting effort, by increasing the likelihood of a good outcome, intensifies disappointment (Mellers
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et al., 1999; van Dijk et al., 1999). Finally, our finding of a Second Mover discouragement effect
adds to the existing empirical literature on the impact of feedback during tournaments, which
includes Berger and Pope (2009) and Eriksson et al. (2009).

The rest of the paper is structured as follows. Section 2 describes the slider task and the
design of the experiment. Section 3 develops our model of disappointment aversion when agents
compete. Section 4 presents the empirical analysis. Section 5 discusses alternative behavioral
explanations of the discouragement effect. Section 6 concludes. Appendix A derives proofs not
included in the main text. Appendix B provides further details about the structural estimation
method and the model’s goodness of fit. Finally, Appendix C lays out the instructions provided
to the experimental subjects.

2 Experimental Design

We ran 6 experimental sessions at the Nuffield Centre for Experimental Social Sciences (CESS)
in Oxford, all conducted on weekdays at the same time of day in late February and early
March 2009 and lasting approximately 90 minutes.2 20 student subjects (who did not report
Psychology or Economics as their main subject of study) participated in each session, with 120
participants in total. The subjects were drawn from the CESS subject pool which is managed
using the Online Recruitment System for Economic Experiments (ORSEE). The experimental
instructions (Appendix C) were provided to each subject in written form and were read aloud
to the subjects. Seating positions were randomized. To ensure subject-experimenter anonymity,
actions and payments were linked to randomly allocated Participant ID numbers. Each subject
was paid a show-up fee of £4 and earned an average of a further £10 during the experiment
(all payments were in Pounds sterling). Subjects were paid privately in cash by the laboratory
administrator. The experiment was programmed in z-Tree (Fischbacher, 2007).

2.1 The Slider Task

Before setting out the experimental procedure, we first describe the novel computerized real
effort task, which we call the “slider task”, that we designed for the purpose of this experiment.

The slider task consists of a single screen displaying a number of sliders. The number
and position of the sliders on the screen does not vary across experimental subjects or across
repetitions of the task. A schematic representation of a single slider is shown in Figure 1.
When the screen containing the effort task is first displayed to the subject all of the sliders are
positioned at 0, as shown for a single slider in Figure 1(a). By using the mouse, the subject
can position each slider at any integer location between 0 and 100 inclusive. Each slider can be
adjusted and readjusted an unlimited number of times and the current position of each slider
is displayed to the right of the slider. The subject’s “points score” in the task is the number of
sliders positioned at 50 at the end of the allotted time. Figure 1(b) shows a correctly positioned
slider. As the task proceeds, the screen displays the subject’s current points score and the
amount of time remaining.

2We also ran one pilot session without any monetary incentives whose results are not reported here.
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(a) Initial position. (b) Positioned at 50.

Figure 1: Schematic representation of a slider.

The number of sliders and task length can be chosen by the experimenter. In this experiment
we used 48 sliders and an allotted time of 120 seconds. The sliders were displayed on 22 inch
widescreen monitors with a 1680 by 1050 pixel resolution. To move the sliders, the subjects
used 800 dpi USB mice with the scroll wheel disabled.3 Figure 2 shows a screen of sliders as
shown to the subject in the laboratory. In this example, the subject has positioned three of the
sliders at 50 and a points score of 3 is shown at the top of the screen. A fourth slider is currently
positioned at 33 and this slider does not contribute to the subject’s points score as it is not
positioned correctly. To ensure that all the sliders are equally difficult to position correctly, the
48 sliders are arranged on the screen such that no two sliders are aligned exactly one under the
other. This prevents the subject being able to position the higher slider at 50 and then easily
position the lower slider by copying the position of the higher slider.

Notes: The screen presented here is slightly squarer than the one seen by our subjects.

Figure 2: Screen showing 48 sliders.

3The keyboards were also disabled to prevent the subjects using the arrow keys to position the sliders.
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The slider task gives a finely gradated measure of performance and involves little randomness;
thus we interpret a subject’s point score as effort exerted in the task. In Section 4 we see that
with 48 sliders and an allotted time of 120 seconds, measured effort varies from 0 to 41, so
the task gives rise to substantial variation in behavior, and hence we can observe accurately
how Second Movers respond to different prizes and First Mover efforts. As the task takes
only two minutes to complete, we can collect repeated observations of the same Second Movers
facing different prizes and First Mover efforts, allowing us to control for persistent unobserved
heterogeneity. The resulting panel data enable us to use structural estimation to quantify
precisely the distribution of the cost of effort and the strength of disappointment aversion across
agents in the population.

The slider task also has a number of other desirable attributes: it is simple to communicate
and to understand; it does not require or test pre-existing knowledge; it is identical across
repetitions; there is no scope for guessing; and as the task is computerized, it is easy to implement
and allows flexible real-time subject interactions.

2.2 Experimental Procedure

In every session 10 subjects were told that they would be a “First Mover” and the other 10 that
they would be a “Second Mover” for the duration of the session. Each session consisted of 2
practice rounds followed by 10 paying rounds.

In every paying round, each First Mover was paired anonymously with a Second Mover.
Each pair’s prize was chosen randomly from {£0.10,£0.20, ...,£3.90} and revealed to the pair
members. The First and Second Movers then completed our slider task sequentially, with the
Second Mover discovering the points score of the First Mover she was paired with before starting
the task. As explained in Section 2.1, we used a slider task with 48 sliders and an allotted time
of 120 seconds. During the task, a number of pieces of information appeared at the top of the
subject’s screen: the round number; the time remaining; whether the subject was a First or
Second Mover; the prize for the round; and the subject’s points score in the task so far. If the
subject was a Second Mover, she also saw the points score of the First Mover. Figure 2 provides
an example of the screen visible to the Second Movers.

The probability of winning the prize for each pair member was 50 plus her own points score
minus the other pair member’s points score, all divided by 100. Thus, we imposed winning
probabilities linear in the difference of the points scores, with equal points scores giving equal
winning probabilities, while an increase of 1 in the difference raised the chance of winning by 1
percentage point for the pair member with the higher points score. The probability of winning
function was explained verbally and using Table 6 (see Appendix C). At the end of the round,
the subjects saw a summary screen showing their own points score, the other pair member’s
points score, their probability of winning the prize given the respective points scores, the prize
for the round and whether they were the winner or loser of the prize in that round.

After each paying round the subjects were re-paired according to Cooper et al. (1996)’s
“no contagion” matching algorithm. This rotation-based algorithm ensures that not only do the
same subjects never meet each other more than once, but that each round is truly one-shot in the
sense that a given subject’s actions in one round cannot influence, either directly or indirectly,
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the actions of other subjects that the subject is paired with later on. The explanation to the
subjects in the experimental instructions provides further detail.

Before starting the paying rounds, the subjects played 2 practice rounds to gain familiarity
with the task and procedure and to give opportunities for questions. To prevent contamination
the subjects were made aware that during the practice rounds they were playing against au-
tomata who behaved randomly. At the end of each practice round, the subjects were informed
of what their probability of winning would have been given the respective points scores, but
were not told that they had won or lost in that round, and no prizes were awarded. We do not
include the practice rounds in the econometric analysis.

3 Theoretical Predictions

In this Section we provide a theoretical model of the behavior of a generic pair of First and
Second Movers competing for a prize v in a particular round. After describing the model, we
show that in the absence of disappointment aversion the Second Mover’s effort does not depend
on the First Mover’s effort, while a disappointment averse Second Mover will respond negatively
to the effort choice of the First Mover.

3.1 One-Shot Theory Model

Two agents compete to win a fixed prize of monetary value v > 0 in a rank-order tournament,
choosing their effort levels sequentially. The First Mover chooses her effort level e1 from an
action space A ⊆ [0, e] which can be discrete or continuous. The Second Mover observes e1

before choosing her effort level e2 from A. As noted in Section 2.1, we interpret a subject’s
points score in the slider task as effort exerted. Agent i’s probability of winning the prize
Pi(ei, ej) increases linearly in the difference between her own effort, ei, and the other agent’s
effort, ej . Assuming symmetry of the probability of winning functions,

Pi(ei, ej) =
ei − ej + γ

2γ
, (1)

with γ ≥ e to ensure that Pi ∈ [0, 1].4 Throughout we focus on the behavior of the Second Mover
conditional on the First Mover’s effort e1. Thus we are able to abstract from any game-theoretic
considerations, as the Second Mover faces a pure optimization problem given the First Mover
effort that she observes.

3.2 No Disappointment Aversion

Applying the canonical model in the tournament literature, the Second Mover’s utility U2 is
separable into utility u2(y2) from her tournament payoff y2 ∈ {0, v}, which we call her material
utility, and her cost of effort C2(e2), so

U2(y2, e2) = u2(y2)− C2(e2). (2)
4Che and Gale (2000) call this a piece-wise linear difference-form success function.
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This separability assumption in the canonical model is equivalent to saying that: (i) the cost of
effort does not depend on whether the agent wins the prize; and (ii) when the monetary prize is
awarded, the valuation placed on the prize is independent of how hard the agent worked. The
agent exerts effort in a two minute interval before the outcome of the tournament is determined,
justifying the first assumption. In relation to (ii), disappointment aversion is a micro-founded
explanation of why agents might indeed care about efforts exerted when evaluating the prize.5

Separability implies that the Second Mover’s expected utility is given by

EU2(e2, e1) = P2(e2, e1)u2(v) + (1− P2(e2, e1))u2(0)− C2(e2)

= (u2(v)− u2(0))
(

e2 − e1 + γ

2γ

)
+ u2(0)− C2(e2). (3)

As the winning probabilities are linear in the difference in efforts, the First Mover’s effort e1 has
no effect on the marginal impact of the Second Mover’s effort e2 on her probability of winning.
Thus the Second Mover’s marginal utility with respect to her own effort does not depend on e1,
giving the following result.

Proposition 1 In the canonical model without disappointment aversion the Second Mover’s

optimal effort e∗2 (or set of optimal efforts) does not depend on the First Mover’s effort e1.

Note that we have not imposed any concavity or differentiability assumptions on u2(y2) (and
nor have we assumed anything about the shape of C2(e2)). Thus the result continues to hold
if the Second Mover exhibits any degree of risk aversion over her monetary payoff, if she is
inequity averse over monetary payoffs (Fehr and Schmidt, 1999) or if she is loss averse around
a fixed reference point (the last two follow as the utility to winning or losing can be redefined
to incorporate a comparison to a fixed reference point or to the payoff of the First Mover). The
result also holds if u2(y2) incorporates an impact of winning or losing on the utility function in
any later tournaments, e.g., via changes in wealth or the reference point.

3.3 Disappointment Aversion

Models of disappointment aversion (e.g., Bell, 1985; Loomes and Sugden, 1986; Delquié and Cillo,
2006; Kőszegi and Rabin, 2006, 2007) build on the idea that agents are sensitive to deviations
from their expectations, suffering a psychological loss when they receive less than expected and
experiencing elation when they receive more. Furthermore, agents anticipate these losses and
gains when deciding how to behave.

We follow the literature in embedding disappointment aversion in a loss aversion-type frame-
work. Suppose that the Second Mover compares her material utility u2(y2) to a reference level
of utility R2, suffering losses when u2(y2) is less than this reference point and enjoying gains

5In their related work, Abeler et al. (2009) make an equivalent separability assumption. In broader labor
supply models, utility can be non-separable in consumption and leisure either because consumption and leisure
are substitutable for each other or because consumption may be more valuable when an agent has more leisure
time to enjoy the consumption. These effects are absent in our framework because consumption occurs after the
experiment.
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when u2(y2) exceeds the reference point. Specifically, total utility U2 is given by6

U2(y2, R2, e2) = u2(y2) + 1u2(y2)≥R2
G2(u2(y2)−R2) + 1u2(y2)≤R2

L2(u2(y2)−R2)−C2(e2), (4)

where the loss function L2(x) < 0 for x < 0, the gain function G2(x) ≥ 0 for x > 0 and
G2(0) = L2(0) = 0. The utility arising from the comparison of u2(y2) to the reference point is
termed gain-loss utility. The Second Mover is said to be loss averse if losses due to downward
departures from the reference point are more painful than equal-sized upward departures are
pleasurable, i.e., G2(x) < |L2(−x)| for all x > 0. The Second Mover is first-order loss averse
if she is loss averse in the limit as the deviations from the reference point go to zero, i.e.,
limx↑0 L′2(x) > limx↓0 G′

2(x), assuming differentiability of gain-loss utility except at the kink
where x = 0.

Starting with Kahneman and Tversky (1979), most models of loss aversion take the reference
point to be fixed exogenously, for example assuming it to be equal to the status quo. We noted
above that the utility formulation (2) is flexible enough to incorporate loss aversion around a
fixed reference point. Thus, a fixed reference point does not introduce any interdependence
between the efforts of the First and Second Movers (to see that Proposition 1 continues to hold,
note that if u2(y2) in (2) is redefined to include gain-loss utility, the analysis proceeds as before).

Instead of holding a fixed reference point, we assume that a disappointment averse Second
Mover is loss averse around an endogenous reference point equal to her expected material utility
given the effort levels that are actually chosen,7 so

R2 = E[u2(y2)|e2, e1]. (5)

Thus a Second Mover’s reference point will be sensitive to both the effort chosen by the First
Mover and her own effort, and when optimizing the Second Mover understands that her effort
choice affects her reference point. Notice that the endogeneity of the expectation is crucial. If
the Second Mover starts with a reference point equal to a prior expectation which is invariant
to the effort levels that are actually chosen, the reference point is fixed so, as explained above,
Proposition 1 still holds. Instead, our reference point adjusts to the agents’ choices: in the
terminology of Kőszegi and Rabin (2007) the reference point is choice-acclimating.8

6Kahneman and Tversky (1979)’s Prospect Theory incorporates a loss averse value function defined only over
losses and gains relative to the reference point, while we follow the disappointment aversion literature in defining
total utility over both material utility and gain-loss utility arising from the comparison of material utility to the
reference point. By modeling each tournament as a one-shot interaction, we are assuming that our subjects frame
each tournament narrowly, i.e., they compare the outcome of each tournament to their reference point in isolation.
Models and tests of loss aversion generally incorporate narrow framing, either implicitly or explicitly (DellaVigna,
2009).

7In a single agent set-up, Bell (1985) and Loomes and Sugden (1986) also use a reference point equal to
expected material utility given the chosen action. Delquié and Cillo (2006) and Kőszegi and Rabin (2006, 2007)
argue that in a stochastic environment, the reference point itself should be taken to be a lottery, with an agent
comparing the outcome to all the possible outcomes in the reference lottery and weighting each comparison by
the probability of the relevant reference outcome. It is straightforward to show that in the linear environment
considered below the reference lottery approach collapses to our single reference point set-up.

8Technically our game is psychological as the Second Mover’s utility depends on her beliefs about the chosen
efforts via the reference point. In particular, our game falls under Battigalli and Dufwenberg (2009)’s framework
of a dynamic psychological game as utility depends on terminal node (ex post) beliefs, which are pinned down by
the chosen efforts, so beliefs can update during the course of the game.
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To operationalize our model, we linearize material utility and gain-loss utility.9 We assume
that u2(y2) = y2, so material utility is linear in money and the Second Mover’s reference point
becomes her expected monetary payoff, i.e.,

R2 = vP2(e2, e1). (6)

Furthermore, we assume that the gain-loss utility arising from the comparison of u2(y2) to the

reference point is piece-wise linear, with a constant slope of g2 in the gain domain and l2 in the

loss domain. With piece-wise linearity, loss aversion implies that l2 > g2, so losses are more

painful than same-sized gains are pleasurable.10 Thus we define disappointment aversion as

follows.

Definition 1 A disappointment averse Second Mover is loss averse around her expected mone-

tary payoff, so λ2 ≡ l2− g2, which measures the strength of disappointment aversion, is strictly

positive.

We can then express a disappointment averse Second Mover’s expected utility as

EU2(e2, e1) = P2(v + g2(v − vP2)) + (1− P2)(0 + l2(0− vP2))− C2(e2)

= vP2 − λ2vP2(1− P2)− C2(e2), (7)

and we let
Λ2(e2, e1) ≡ −λ2vP2(1− P2) (8)

represent the extra term introduced into expected utility by disappointment aversion. We call Λ2

the Second Mover’s disappointment deficit as it is always negative for λ2 > 0 (strictly negative
for Pi /∈ {0, 1}). For a given prize v the disappointment deficit is proportional to v2P2(1−P2), the
variance of the Second Mover’s two-point distribution of monetary payoffs. A disappointment
averse Second Mover dislikes variance in her monetary payoff as losses relative to her expected
payoff loom larger than gains. (With risk aversion, agents care only about their probability of
winning as there are only two possible outcomes.)

The variance is strictly concave in P2 and maximized at P2 = 1
2 . When efforts are such

that the Second Mover has zero probability of winning, the Second Mover has a reference point
of zero and her realized payoff equals her reference point; she is never disappointed and never
receives more than expected. Hence her disappointment deficit is zero. Starting at zero, a small
increase in her probability of winning leads to a large increase in the variance of her monetary
payoff. Further increases in the probability of winning towards 1

2 lead to further yet smaller
increases in the variance. At P2 = 1

2 the variance is at its highest so the disappointment deficit
is at its most negative - irrespective of whether she wins or loses the Second Mover’s realized
payoff is very different from her expected payoff. Starting at P2 = 1

2 increases in the probability
of winning reduce the variance, initially by small amounts, and then by larger amounts as the
probability of winning approaches 1.

9Given the experimental stakes are small, we believe this comes at a low cost.
10With piece-wise linearity, loss aversion and first-order loss aversion are equivalent. If l2 = g2, gains and losses

relative to the reference point cancel out in expectation, so the agent acts as if she had standard preferences.
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For any value of the Second Mover’s effort, an increase in the First Mover’s effort reduces
the Second Mover’s probability of winning. The variance therefore increases faster in P2 (when
P2 < 1

2) or falls less fast in P2 (when P2 > 1
2), so the Second Mover has a lower marginal

incentive to exert effort (given her effort always has the same marginal effect on her probability
of winning). We thus have a discouragement effect, which is crucial to our identification strategy:
a disappointment averse Second Mover responds negatively to the First Mover’s effort, so the
harder the First Mover works the more the Second Mover shies away from exerting effort. Thus
First and Second Mover efforts are strategic substitutes.11

Proposition 2 When the Second Mover is disappointment averse, higher First Mover effort

discourages the Second Mover: the Second Mover’s optimal effort e∗2 is always (weakly) decreasing

in the First Mover’s effort e1.

Proof. See Appendix A.1.

Up to now we have imposed no assumptions on the shape of the cost of effort function. In
order to derive an analytical expression for how the Second Mover responds to the First Mover’s
effort, and to see how the slope of the reaction function changes in the value of the prize and
the strength of disappointment aversion, we now assume a quadratic cost of effort function:

C2(e2) = be2 +
ce2

2

2
. (9)

With this cost function, the Second Mover’s objective function will be everywhere convex or
everywhere concave. With strict convexity, the Second Mover will always set effort at a corner.
Instead we focus here on the case of strict concavity, which allows interior optima, showing that
the discouragement effect becomes stronger as the Second Mover becomes more disappointment
averse or the value of the prize goes up.

Proposition 3 Suppose a disappointment averse Second Mover has a quadratic cost function

(given by (9)) and a strictly concave objective function, i.e., 2γ2c − λ2v > 0. When the action

space is continuous, the slope of the Second Mover’s reaction function in the interior is given by

de∗2
de1

=
−λ2v

2γ2c− λ2v
< 0 (10)

which becomes strictly more negative in the strength of disappointment aversion λ2 and the value

of the prize v. When the action space is discrete, the discrete analogue of the reaction function

behaves similarly.

Proof. See Appendix A.2.

These effects are intuitive. Referring back to (8) we see that the disappointment deficit term
becomes more negative in the strength of disappointment aversion λ2 and the value of the prize
v, so the Second Mover becomes more sensitive to First Mover effort as v and λ2 go up.

11It is straightforward to extend the proof of Proposition 2 to show that if λ2 were negative, the Second Mover
would respond positively to the First Mover’s effort.
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4 Empirical Analysis

4.1 Overview and Sample Description

We use the data set collected from the laboratory experiment described in Section 2 to test
our theory of disappointment aversion. In Section 4.2 we show in a reduced form setting that,
as predicted by our theory of disappointment aversion, Second Movers respond negatively to
the effort choice of the First Mover they are paired with and that the strength of this effect
is increasing in the value of the prize. In Section 4.3 we use structural modeling to estimate
the strength of disappointment aversion on average and the heterogeneity in disappointment
aversion across the population. As outlined in the Introduction and Section 2.1, our estimation
strategies exploit identifying variation obtained from the properties of our slider task together
with the experimental design.

We analyze the behavior of Second Movers conditional on the effort choices of the First
Movers. As noted in Section 3.1, this allows us to abstract from any game-theoretic consid-
erations as the Second Movers face a pure optimization problem. This conditional analysis is
sufficient for the purpose of identifying the presence and strength of disappointment aversion.
Moreover, solving for the optimal behavior of the First Movers would require further assumptions
concerning the First Movers’ beliefs about the unobserved characteristics and behavior of the
Second Movers. We avoid these issues, together with the associated computational complexities
and potential sources of misspecification, when performing a conditional analysis of the Second
Mover effort choices.

As explained in Section 2.1, we interpret the number of sliders correctly positioned by a
subject within the allotted time, i.e., the points score, as the effort exerted by the subject in the
task. While the slider task provides a finely gradated measure of effort, effort is still discrete.
We emphasize that this discreteness is entirely unproblematic. Indeed, the above theoretical
framework encompasses both discrete and continuous effort choices, and the testable implications
of our theory of disappointment aversion apply irrespective of whether effort is discrete or
continuous. In addition, as detailed below, discrete effort choices are easily accommodated in
our structural model.

From the laboratory sessions we collected data on 60 First Movers and 60 Second Movers,
each observed for 10 paying rounds, with re-pairing between rounds as detailed in Section 2.2.
One Second Mover appears to have been unable to position any sliders at exactly 50.12 Through-
out our analysis this subject is dropped, except for the purpose of showing that our results are
robust to our sample selection. Table 1 summarizes the behavior of the 59 Second Movers and
the corresponding First Movers in each round. Efforts range between 0 and 41 sliders for First
Movers and 0 and 40 sliders for Second Movers. Within each round, on average First and Second
Movers exert roughly the same effort, with average effort increasing from around 22 sliders to
just under 27 sliders over the 10 rounds.

12The data show that this subject was moving sliders around throughout the session but failed to position any
sliders at exactly 50 in either the practice rounds or in the paying rounds. This subject also experienced problems
when entering his/her Participant ID number.
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Paying
Mean(e1) SD(e1) Mean(e2) SD(e2)

Minimum Maximum
Round e1 e2 e1 e2

1 22.034 5.991 21.763 6.101 1 0 33 34
2 22.627 6.708 23.458 4.836 0 11 33 33
3 24.763 6.075 24.831 4.875 0 12 37 38
4 24.627 5.956 25.203 4.502 0 16 35 36
5 24.966 6.800 25.119 5.660 0 0 36 35
6 24.729 7.508 24.898 7.039 1 0 37 39
7 25.881 5.855 25.763 6.109 9 0 37 37
8 26.831 5.858 26.169 5.133 9 14 41 35
9 25.593 8.550 26.254 6.702 0 0 38 40
10 26.322 6.781 26.729 5.988 1 0 40 39

Notes: SD denotes standard deviation and e1 and e2 denote, respectively, First and Second Mover effort.

Table 1: Summary of First and Second Mover efforts.

4.2 Reduced Form Analysis

We use a panel data regression to examine whether Second Movers respond to the effort choice
of the First Mover they are paired with. Exploiting Proposition 1, we hypothesize that if Second
Movers are not disappointment averse then the observed efforts of the Second Movers will not
depend on the corresponding First Mover efforts once controls for the prize and round effects
are included.13 Alternatively, if subjects are disappointment averse then Proposition 2 implies a
negative dependence of observed Second Mover efforts on the corresponding First Mover efforts,
again conditional on controls for the prize and round effects.

To explore how Second Movers respond to First Mover effort we estimate the following linear
random effects panel data model:

e2,n,r = β1+β2vn,r+β3e1,n,r+β4e1,n,r×vn,r+dr+ωn+εn,r for n = 1, . . . , N ; r = 1, ..., 10, (11)

where n and r index, respectively, Second Movers and paying rounds, and N denotes the total
number of Second Movers. e1,n,r is the effort of the First Mover paired with the nth Second
Mover in the rth round, and vn,r is the prize draw for the nth Second Mover in the rth round.
The prize, the First Mover’s effort and the First Mover’s effort interacted with the prize are
included as explanatory variables. The inclusion of the interaction of the prize and the First
Mover’s effort is motivated by Proposition 3 which shows that in the case of a quadratic cost
of effort function the negative effect of the First Mover’s effort on the Second Mover’s optimal
effort is larger at higher prizes. Additionally, the equation includes a set of round dummies
denoted by dr for r = 1, ..., 10, with the first paying round providing the omitted category, to
capture systematic differences between rounds which are common across Second Movers, and
round invariant Second Mover specific effects denoted ωn for n = 1, . . . , N to capture systematic

13We note however that First and Second Mover efforts will not be unconditionally independent in the presence
of prize and round effects which impact on both pair members.
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differences between Second Movers. Lastly, εn,r is an unobservable that varies over rounds and
over Second Movers and captures differences between rounds in a Second Mover’s effort choice
that cannot be attributed to the other terms in the model. ωn is assumed to be identically and
independently distributed over Second Movers with a variance σ2

ω, while εn,r is assumed to be
identically and independently distributed over rounds and Second Movers with a variance σ2

ε .

Preferred Sample Full Sample
59 Second Movers 60 Second Movers

Coefficient Standard Error Coefficient Standard Error

First Mover effort 0.044 0.049 0.047 0.049
Prize 1.639∗∗∗ 0.602 1.655∗∗∗ 0.592

Prize×First Mover effort −0.049∗∗ 0.023 −0.050∗∗ 0.023
Intercept 19.777∗∗∗ 1.400 19.392∗∗∗ 1.447

σω 4.288 5.342
σε 3.852 3.826

N ×R 590 600

Hausman test for random 2.60 2.43
versus fixed effects df = 12, p = 0.998 df = 12, p = 0.998

Notes: ∗, ∗∗ and ∗∗∗ denote significance at the 10%, 5% and 1% levels. df denotes degrees of freedom.

Both specifications further include dummy variables for each of rounds 2-10 inclusive. The coefficients

on these variables are between 1.7 and 5.2, significantly greater than zero, and tend to increase over the

rounds.

Table 2: Random effects regressions for Second Mover effort.

Table 2 reports estimates of the parameters appearing in (11). The results for the preferred
sample show a negative effect of First Mover effort on Second Mover effort. In more detail, at low
prizes First Mover effort does not significantly affect Second Mover effort, while at high prizes
there is a large and significant discouragement effect as predicted by our theory of disappointment
aversion. Application of the Delta method reveals that the effect of First Mover effort on Second
Mover effort is not significant at the 5% level for prizes less than £2, is significant at the 5%
level for prizes between £2 and £2.60, and is significant at the 1% level for prizes of £2.70
and above. For the highest prize of £3.90 a 40 slider increase in First Mover effort decreases
Second Mover effort by approximately 6 sliders, a 24% decrease relative to the average effort of
25 sliders.14 Furthermore, there are large and significant positive prize effects, and we find that
the persistent unobserved individual characteristics explain more of the variation in behavior
than the transitory unobservables.

We note that, although the parameters reported in Table 2 were estimated from a linear
random effects model, an alternative specification in which round invariant Second Mover specific
effects are treated as fixed effects yields almost indistinguishable results. This is because Second
Mover specific effects are uncorrelated with the prize and the First Mover efforts due to the
experimental design. Finally, Table 2 shows that including the 60th Second Mover does not

14We use a 40 slider increase as an illustrative example as First Mover efforts ranged from 0 to about 40 (see
Table 1).
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change conclusions concerning significance, and nor does this have substantial effects on the
coefficient estimates.

4.3 Structural Modeling

Structural modeling seeks to fit the theoretical model with disappointment aversion presented
above in Section 3.3 to the experimental sample. In contrast to the reduced form analysis above,
structural modeling recovers estimates of the strength of disappointment aversion on average and
the population-level heterogeneity in disappointment aversion. Below we describe our preferred
empirical specification, our estimation strategy, including a discussion of identification, and our
results. We then proceed to explore robustness to the specification of the reference point and
of the cost of effort function. Finally, we relate our estimate of the disappointment aversion
parameter to existing measures of loss aversion around fixed reference points.

4.3.1 Preferred Empirical Specification

We use λ2,n to denote the disappointment aversion parameter of the nth Second Mover. In this
specification the strength of disappointment aversion may vary between subjects; however, for
a given subject the strength of disappointment is constant over rounds. We adopt the following
specification for λ2,n:

λ2,n ∼ N(λ̃2, σ
2
λ) for n = 1, . . . , N, (12)

and further assume that λ2,n is independent over Second Movers. The parameter λ̃2 represents
the strength of disappointment aversion on average, and σ2

λ denotes the variance of the strength
of disappointment aversion in the population.

The cost of effort function is assumed to be quadratic, as in (9). The parameter b is assumed
to be constant over rounds and common to Second Movers, while unobserved cost differences
between Second Movers and learning effects enter the cost of effort function through the con-
vexity parameter c. cn,r denotes the convexity parameter of the nth Second Mover in the rth

round and takes the following form:

cn,r = κ + δr + µn + πn,r for n = 1, . . . , N ; r = 1, ..., 10. (13)

In the above κ denotes the component of cn,r which is common across Second Movers and
rounds. δr for r = 1, ..., 10 are round effects, with the first paying round providing the omitted
category. A cost of effort that is declining over rounds due to learning is therefore represented by
values of δr which are negative and decreasing over rounds. µn denotes unobserved differences
in the cost of effort functions across Second Movers that are constant over rounds. For the
purpose of estimation µn is assumed to be independent over Second Movers and to have a
Weibull distribution with scale parameter φµ and shape parameter ϕµ. The final term in the
cost function is πn,r which represents unobserved differences in Second Movers’ cost of effort
functions that vary over rounds as well as over Second Movers. πn,r is assumed to be independent
over Second Movers and rounds and to have a Weibull distribution with scale parameter φπ and
shape parameter ϕπ. The Weibull distribution is a flexible two parameter distribution that has
positive support, thus allowing us to impose convex cost of effort functions on all Second Movers
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when estimating the model.
Given this parameterization of the theoretical model, the structural model has 17 unknown

parameters, corresponding to the parameters describing disappointment aversion, λ̃2 and σλ, the
common cost parameters b and κ, the 9 round effects δr for r = 2, ..., 10 and the 4 parameters
appearing in the distribution of the unobservables in the cost of effort function, namely, φµ, ϕµ,
φπ and ϕπ. These 17 structural parameters are collectively denoted by the vector θ.

4.3.2 Estimation Strategy and Identification

We estimate the 17 unknown parameters using the Method of Simulated Moments (MSM) (Mc-
Fadden, 1989; Pakes and Pollard, 1989). The analytic complexity of choice probabilities, due
to the multiple sources of unobserved heterogeneity, precludes the use of Maximum Likelihood
and Method of Moments estimation techniques. MSM, in contrast, uses easily computed fea-
tures of the sample as the basis for estimating the unknown parameters. Formally, the sample
observations are used to compute a k× 1 dimensional vector of moments, with k ≥ 17, denoted
M . Critically, every moment included in M should depend at least in part on one or more
endogenous variables. The researcher has considerable discretion over the moments included in
M ; however M typically includes period specific averages of endogenous variables, here the effort
choices of the Second Movers in each round, together with correlations between the endogenous
variables and the explanatory variables.

MSM proceeds by generating S simulated samples. Each simulated sample contains N

Second Movers each observed for 10 rounds. In each simulated sample the Second Movers face
the same prizes and First Mover efforts as observed in the actual sample. The behavior of the
Second Movers in the simulated samples is determined from the structural model using a trial
value, θt, of the values of the unknown parameters, θ. In particular, unobservables are assigned
to Second Movers in accordance with the above described distributions. For each Second Mover
and each round, the expected utility is calculated for each feasible Second Mover effort choice,
and the simulated effort choice is the action with the highest expected utility. Further details
concerning the construction of the simulated samples are provided in Appendix B.1.

The behavior of the Second Movers in the simulated samples is then compared to the behavior
of the actual experimental subjects. Specifically, for each of the S simulated samples the vector
of moments Ms(θt) is computed. These are the same k moments as computed for the observed
sample. The simulated moments Ms are a function of the parameters θt used to simulate the
behavior of the Second Movers as different values of the parameters imply different optimal
Second Mover effort choices. The average of Ms over the S simulated samples, 1

S

∑S
s=1 Ms(θt),

provides a summary of the behavior of Second Movers in the simulated samples. The process of
averaging over the S simulated samples reduces the effect of simulation noise on the simulated
moments. The following metric is then formed:

J(θt) =

(
M − 1

S

S∑

s=1

Ms(θt)

)′

WN

(
M − 1

S

S∑

s=1

Ms(θt)

)
, (14)

where WN is a fixed k × k dimensional positive semidefinite weighting matrix. The quantity
J(θt) provides a scalar measure of the distance between the observed behavior of the actual
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experimental subjects and the behavior of the Second Movers in the simulated samples at the
trial parameter vector θt. The MSM estimator of θ, denoted θ̂, is the value of θt that minimizes
J(θt): θ̂ = argminθt

J(θt). Thus MSM estimates the structural parameters to be such that the
behavior of Second Movers simulated on the basis of the structural model is as similar as possible
to the behavior of the actual Second Movers as observed in sample.

Under the conditions of Pakes and Pollard (1989), the MSM estimator is consistent and
asymptotically normal for any consistent weight matrix WN . We use a weight matrix with
diagonal elements equal to the inverse of N times the variances of the sample moments and zeros
elsewhere and use bootstrap sampling of Second Movers with replacement to estimate WN .15

Further details pertaining to the properties of the MSM estimator and estimation routine are
presented in Appendix B.2.

We use 38 moments to estimate the 17 structural parameters. The moments are described in
Table 4 in Appendix B.3. Correlations between Second Mover effort and First Mover effort and
between Second Mover effort and First Mover effort interacted with the prize provide identifying
information about λ̃2, the parameter describing the strength of disappointment aversion on av-
erage. Percentiles of Second Mover specific correlations provide information about the standard
deviation of disappointment aversion in the population, σλ. The correlation between Second
Mover effort and the prize helps to identify κ, which measures the component of the convexity
of the cost of effort function common to Second Movers and rounds, while the associated per-
centiles help to identify the shape of the distributions of the unobserved cost differences between
Second Movers. Moments pertaining to the marginal distribution of Second Mover effort, such
as round specific means and the standard deviation, provide further identifying information.

4.3.3 Results

The upper left panel of Table 3 reports the parameter estimates for the preferred specification.
Before discussing the results we briefly consider the goodness of fit of the preferred specification,
presented in Table 5 located in Appendix B.3. Table 5 shows that all fitted moments correspond
closely to the values observed in the sample: in particular the z test statistics show that the
observed and fitted moments never differ by more than 1.2 bootstrapped standard deviations.
Consistent with this, the Newey test for the validity of overidentifying restrictions (OI test),
reported in Table 3, does not reject the validity of the preferred specification.

Turning to the parameter estimates for the preferred specification, our estimate of the
strength of disappointment aversion on average, λ̃2, is 1.729 and this is significantly different
from zero at all conventional significance levels. In Section 4.3.6 we place this estimate in the
context of the related literature but we note here that a figure of 1.729 is in line with previous
studies which estimate the strength of loss aversion around a fixed reference point. We find that
σλ is significantly greater than zero, thus providing evidence for heterogeneity in disappointment
aversion across individuals. Our parameter estimates imply that λ2,n is greater than 3.3 for 20%
of individuals, and is less than 0.2 for 20%. For 17% of individuals, λ2,n is less than zero.

15Using instead the optimally weighed minimum distance estimator improves efficiency but can introduce con-
siderable finite sample bias (see Altonji and Segal, 1996).
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Preferred Non-Quadratic Normally Distributed

Specification Cost of Effort Cost Unobservables

Estimate SE Estimate SE Estimate SE

λ̃2 1.729∗∗∗ 0.532 1.758∗∗∗ 0.640 1.260∗∗∗ 0.470

σλ 1.823∗∗∗ 0.556 1.868∗∗∗ 0.634 1.393∗∗∗ 0.481

b -0.538∗∗∗ 0.036 -0.407∗∗∗ 0.018 -0.493∗∗∗ 0.012

κ 1.946∗∗∗ 0.103 2.063∗∗∗ 0.135 2.427∗∗∗ 0.059

σµ 0.516∗∗∗ 0.062 0.902∗∗∗ 0.151 0.266∗∗∗ 0.024

σπ 0.346∗∗∗ 0.127 0.716∗∗∗ 0.204 0.204∗∗∗ 0.030

α - - - - - -

ψ - - 2.534∗∗∗ 0.128 - -

de2/de1(v=£0.10, low λ2,n) -0.000 0.001 -0.000 0.001 -0.000 0.002

de2/de1(v=£2, average λ2,n) -0.030∗∗∗ 0.011 -0.028∗∗ 0.013 -0.025∗ 0.013

de2/de1(v=£3.90, high λ2,n) -0.127∗∗∗ 0.026 -0.107∗∗∗ 0.034 -0.100∗∗∗ 0.019

OI test 25.555 [0.224] 13.435 [0.858] 61.480 [0.000]

Own-Choice-Acclimating Own-Choice-Acclimating Full Sample:

Reference Point (g2 = 0) Reference Point (g2 = 1) 60 Second Movers

Estimate SE Estimate SE Estimate SE

λ̃2 2.070∗∗∗ 0.426 1.909∗∗∗ 0.664 1.200∗∗∗ 0.426

σλ 1.476∗∗ 0.643 1.201∗∗ 0.534 1.206∗ 0.654

b -0.615∗∗∗ 0.017 -0.591∗∗∗ 0.015 -0.486∗∗∗ 0.024

κ 2.187∗∗∗ 0.103 2.102∗∗∗ 0.060 1.769∗∗∗ 0.071

σµ 0.526∗∗∗ 0.050 0.578∗∗∗ 0.077 0.600∗∗∗ 0.110

σπ 0.410∗∗∗ 0.086 0.345∗∗∗ 0.062 0.317∗∗∗ 0.122

α 0.944∗∗∗ 0.236 0.986∗∗∗ 0.156 - -

ψ - - - - - -

de2/de1(v=£0.10, low λ2,n) -0.001 0.001 -0.001 0.001 -0.000 0.001

de2/de1(v=£2, average λ2,n) -0.034∗∗∗ 0.012 -0.032∗∗∗ 0.012 -0.024∗∗ 0.011

de2/de1(v=£3.90, high λ2,n) -0.106∗∗∗ 0.027 -0.099∗∗∗ 0.026 -0.096∗∗∗ 0.028

OI test 11.583 [0.930] 20.980 [0.398] 24.005 [0.293]

Note 1: Where applicable, standard deviations of the transitory and persistent unobservables in the cost of

effort function, σπ and σµ, are computed from the estimates of the parameters of the Weibull distribution.

Estimates of κ, σπ and σµ have been multiplied by 100.

Note 2: All specifications further include dummy variables for each of rounds 2-10 inclusive. In the preferred

specification, the coefficients on these variables, scaled as per κ, are between -0.1 and -0.5, significantly less

than zero, and tend to decrease over the rounds.

Note 3: Reaction functions and their gradients were obtained using simulation methods. Using the estimated

parameters of the cost of effort function for round 5, we simulated a large number of hypothetical Second

Mover optimal efforts conditional on specific values of First Mover effort and the prize, and computed the

mean best response. The gradients are linear, except in the case of non-quadratic effort costs where we

evaluate the gradients at e1 = 20. Low, average and high λ2,n refer to the 20th, 50th and 80th percentiles of

the distribution of λ2,n .

Note 4: The construction of the test statistic for the validity of overidentifying restrictions (OI test) is detailed

in Newey (1985). p values are shown in brackets.

Note 5: Unless stated otherwise, all results were obtained using our preferred sample of 59 Second Movers.

Table 3: MSM parameter estimates.
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The results further show that the cost of effort function exhibits significant convexity. In
addition there is significant transitory and permanent variation over Second Movers in the cost of
effort, with persistent unobserved differences being more important than transitory differences.
Our estimate of b, the linear component of the cost of effort function, is negative, indicating
that the cost of effort is declining at low effort levels. This negative coefficient is required to fit
accurately observed average Second Mover effort. However, the linear component of the cost of
effort function does not affect how Second Movers respond to the First Movers’ efforts. Moreover,
it is not surprising that the cost of effort is at first declining as the experimental subjects have
self-selected into participating in the experiment and the outside option during the task is to do
nothing for 120 seconds. Other experiments have also found that subjects derive some utility
from carrying out real effort tasks, e.g., Brüggen and Strobel (2007).

Figure 3 shows the extent to which heterogeneity in disappointment aversion translates into
differences in mean Second Mover responses to First Mover effort, evaluated at the average prize
of £2 and at the highest prize of £3.90. Second Movers with low values of λ2,n, defined to be
the 20th percentile of the distribution of λ2,n, do not respond appreciably to changes in First
Mover effort. In contrast, we observe a significant discouragement effect (at the 1% level) for
Second Movers with average values of λ2,n, or with high values, defined to be the 80th percentile
of the distribution of λ2,n. At the highest prize of £3.90, a 40 slider increase in First Mover
effort decreases optimal Second Mover effort by 2.5 sliders for an individual with the average
λ2,n, and by 5.1 sliders for an individual with a high λ2,n. In the context of an average Second
Mover effort of 25, these effects represent reductions of 10% and 20% respectively in optimal
Second Mover effort.16
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Notes: We illustrate the reaction functions over the range 0 to 40 sliders as Table 1 shows First Mover efforts

varied over this range. Note 3 to Table 3 explains how these reaction functions are constructed. Error bars are

omitted; standard errors for the average λ2,n case in subfigure (a) and for the high λ2,n case in subfigure (b) are re-

ported in Table 3. Low, average and high λ2,n refer to the 20th, 50th and 80th percentiles of the distribution of λ2,n .

Figure 3: Reaction functions implied by the preferred specification of the structural model.

16The magnitudes of the estimated slopes are somewhat lower than the corresponding estimates implied by
the reduced form analysis in Section 4.2. This is because MSM seeks to fit simultaneously a variety of different
moments. If we arbitrarily put a higher weight on the moments identifying these slopes, the estimated magnitudes
would be larger.
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4.3.4 Robustness: Own-Choice-Acclimating Reference Point

The expectations-based reference point in our model adjusts to both the First Mover’s and the
Second Mover’s effort choices. Thus our finding of significant disappointment aversion provides
evidence of loss aversion around choice-acclimating reference points when agents compete.

With a fixed reference point, including one given by a prior expectation, Proposition 1 shows
that we should observe no discouragement effect. However, if the expectations-based reference
point adjusted only to the First Mover’s effort, there would still exist a discouragement effect.17

In order to test whether the expectations-based reference point adjusts only to the First Mover’s
effort, we generalize the reference point (6) as follows for α ∈ [0, 1]:

R2 = αvP2(e2, e1) + (1− α)vP2(ẽ2, e1), (15)

where ẽ2 is fixed, and so does not adjust to the Second Mover’s choice of effort (ẽ2 could for
instance arise from a prior expectation).

We re-estimate our model, simultaneously estimating α as well as the 17 other parameters
from the preferred specification.18 The bottom lower and bottom middle panels of Table 3 show
that we estimate α to be close to 1, so the Second Movers place little weight on the part of the
reference point that does not adjust to their own effort choice. Moreover, the estimates of α are
significantly different from zero at the 1% level. We argue that this provides strong evidence
that the Second Movers’ reference points are indeed own-choice-acclimatizing, as assumed in the
preferred specification.

4.3.5 Further Robustness

The remaining panels in Table 3 provide further robustness checks for various features of our
analysis. The upper middle panel of Table 3 reports the results for a specification in which the
cost of effort function is not constrained to be quadratic, but instead takes the form C(e2) =

be2+
ceψ

2
ψ , where ψ is an additional parameter to be estimated. We estimate ψ to be approximately

2.5. In the upper right panel, we report estimates of a specification in which the unobservables
appearing in the cost of effort function are normally distributed, rather than being drawn from
Weibull distributions. The Newey test for the validity of overidentifying restrictions (OI test)
rejects this specification, which illustrates the flexibility of the Weibull distribution. Finally,
the bottom right panel shows results obtained for the preferred specification but estimated with
the full sample of 60 Second Movers (see Footnote 12 for details concerning the omitted Second
Mover).

We see that irrespective of the choice of sample and the specification of the cost of effort
function our estimate of the strength of disappointment aversion on average λ̃2 is significantly

17Similarly, in Abeler et al. (2009) the main empirical findings are consistent with a reference point which
adjusts to the fixed payment but not the subjects’ effort choices.

18With this more general reference point, the fixed ẽ2 and the slope of gain-loss utility in the gain domain, g2,
become relevant to the determination of the level of effort (but not to how the Second Movers respond to First
Mover effort). As g2 and ẽ2 are not identified under the null that α = 1, we do not attempt to estimate these
parameters, instead estimating the model for various values of g2 and ẽ2. Results for g2 = 0 and g2 = 1 with ẽ2

equal to the average level of effort of 25 are reported in Table 3. We further estimated the model with g2 = 1
2
,

and also with ẽ2 = 0 together with different values of g2. The results were not substantially different.
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different from zero. Also, all specifications show significant variation across individuals in the
strength of disappointment aversion. Finally, the estimated response of a Second Mover to a
change in First Mover effort varies little across specifications.

4.3.6 Relationship to Existing Estimates of Loss Aversion

The endogeneity of the reference point means that behavior in our model is driven by the
size of the kink in gain-loss utility λ2 = l2 − g2. Other models of choice-acclimating reference
points share the same feature. To see this, we introduce Kőszegi and Rabin (2006, 2007)’s
parameterization, which involves a weighting on gain-loss utility relative to material utility,
η ≥ 0, and a coefficient of loss aversion for gain-loss utility, λ, which measures the ratio of the
slopes of gain-loss utility alone in the loss and gain domains. We estimate the size of the kink in
gain-loss utility, scaled relative to material utility, and λ2 = ηλ−η = η(λ−1). In their model of
single-agent effort provision, Abeler et al. (2009)’s first-order conditions also depend on η(λ−1),
as do preferences over lotteries in the choice-acclimating version of Kőszegi and Rabin (2007)’s
model (see p. 1059 and Proposition 12(i)). Bell (1985)’s original disappointment aversion model
also builds on the size of the kink. We cannot estimate λ directly, as this coefficient interacts
with the weight put on gain-loss utility to determine the size of the kink in gain-loss utility;
nonetheless, because we estimate that λ̃2 > 0, it follows that η > 0 and λ > 1.

Our measure of disappointment aversion is therefore not directly comparable to previous
measures of loss aversion around fixed reference points. Evidence from previous studies suggests
a coefficient of loss aversion of about 2 for Kahneman and Tversky (1979)’s value function
(Kahneman, 2003), i.e., the value function is about twice as steep in the loss domain as it is
in the gain domain. For example, from choices over lotteries Tversky and Kahneman (1992)
estimate a coefficient of 2.25 for their median subject. Kahneman and Tversky (1979)’s value
function is defined only over gains and losses: if we consider this value function to include
implicitly any consumption value of losses and gains as well as psychological elation and pain
from deviating from the reference point, then the comparable figure in our setting to the usual
loss aversion coefficient is the ratio of the slopes of total utility in the loss and gain domains,
given by

1 + l2
1 + g2

= 1 +
λ2

1 + g2
. (16)

Given an assumption about g2, our estimate of λ̃2 therefore implies an estimate of the average
value of (16) in the population. For example, if we assume that g2 ∈ (0, 1), so the elation
associated with receiving more than expected is positive but less important than the associated
material utility, then our estimate λ̃2 = 1.729 implies that (16) ∈ (1.865, 2.729), which matches
previous estimates of the coefficient of loss aversion.
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5 Alternative Behavioral Explanations

Our model of disappointment aversion fits the data well, and the burgeoning empirical literature
which shows the importance of expectations-based reference points in many different contexts
(summarized in the Introduction) lends weight to our thesis that expectations might be salient
when agents compete. Nonetheless, we argue here that a number of alternative behavioral
explanations of the discouragement effect are implausible. To be convincing, any alternative
explanation would have to be properly micro-founded and fit the data at least as well as our
model does.

As we note in Section 3, if the Second Movers were loss averse around fixed reference points
(even when given by a prior expectation) or if they disliked inequity in monetary payoffs, their
marginal incentives to exert effort would continue to be independent of First Mover effort. The
subjects have a joint incentive to coordinate on low effort, so a taste for reciprocity (Rabin, 1993)
would lead to the opposite pattern of response: low First Mover effort is a kind action to be
reciprocated with low effort, while high Second Mover effort is a mean action to be reciprocated
with high effort. Peer effects (Falk and Ichino, 2006), where agents imitate the behavior of
their peers, would also lead to the opposite pattern of response, as would a competitive desire
to match or beat the rival’s effort level. Choking under pressure (Baumeister, 1984), where an
agent’s performance deteriorates when incentives or stakes are higher, is also an implausible
explanation of the discouragement effect. First, the Second Movers’ marginal incentives do not
depend on First Mover effort, so an incentives-based story for choking has no bite. Furthermore,
if the level of the stakes matter Second Movers should choke more when their probability of
winning is higher, i.e., when the First Mover has worked less hard. Finally, we don’t believe
that regret (Loomes and Sugden, 1982) is particularly salient in the context of our experiment
as the agents are not told whether they would have won or lost in the counterfactual world in
which they had chosen a different level of effort.

A notion of equity which, unlike standard inequity aversion over monetary payoffs, factors in
how hard the agents have worked can potentially explain the discouragement effect. Indeed, our
model of disappointment can be re-interpreted as a model of agents who are averse to receiving
less than they feel they deserve given relative efforts (see Gill and Stone, 2009).

6 Conclusion

People compete all the time, e.g., for: promotions; bonuses; professional partnerships; elected
positions; social status; and sporting trophies. In these situations the competitors exert effort to
improve their prospects of success, and clear winners and losers emerge. Our results indicate that
winners are elated while losers are disappointed, and that disappointment is the stronger emo-
tion. In particular, we show that when our experimental subjects compete in a sequential-move
real effort competition, they are loss averse around an endogenous expectations-based reference
point which is conditioned on their own work effort and that of their rival. Disappointment
aversion creates a discouragement effect, whereby a competitor slacks off when her rival works
hard. Our results speak to the debate about the speed at which reference points adjust. Kőszegi
and Rabin (2007) note that it is unclear how much time is needed between agents making their
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choices and the outcome occurring for the reference point to become choice-acclimating. Given
the tiny temporal gap between the agents’ effort choices and the outcome of the tournament, our
results indicate that, at least in our competitive framework, the adjustment process is essentially
instantaneous.

We hope that our theoretical model and empirical findings will provide a useful building
block when predicting how people will behave in competitive situations. Furthermore, the
findings may be helpful to principals when designing competitive environments. For example,
employers will want to know how much they need to compensate employees for the expected
disappointment implicit in different types of compensation schemes. They will also be interested
in the degree to which a given compensation structure might impact on employees’ work efforts,
for example by creating asymmetries with some employees exerting a lot of effort and others
becoming discouraged.

Appendix

A Proofs

A.1 Proof of Proposition 2

Using (1) and (7),

EU2(e2, e1) = v

(
e2 − e1 + γ

2γ

)
− λ2v

(
γ2 − (e2 − e1)2

4γ2

)
− C2(e2). (17)

We use a proof by contradiction. Suppose that when e1 increases from e11 to e12 > e11, the
Second Mover’s optimal effort e∗2 increases from e∗21 to e∗22 > e∗21. By the optimality of the
Second Mover’s effort choices

[EU2(e∗21, e11)− EU2(e∗22, e11)] + [EU2(e∗22, e12)− EU2(e∗21, e12)] ≥ 0. (18)

Using (17), we get the following:

EU2(e∗21, e11)−EU2(e∗21, e12) = v

(−e11 + e12

2γ

)
+ λ2v

(
(e∗21 − e11)2 − (e∗21 − e12)2

4γ2

)
; (19)

EU2(e∗22, e12)−EU2(e∗22, e11) = v

(−e12 + e11

2γ

)
+ λ2v

(
(e∗22 − e12)2 − (e∗22 − e11)2

4γ2

)
. (20)

Thus

(18) =
λ2v

2γ2
(−e∗21e11 + e∗21e12 − e∗22e12 + e∗22e11) =

λ2v

2γ2
(e∗21 − e∗22)(e12 − e11) < 0 (21)

given λ2 > 0 for a disappointment averse Second Mover, which contradicts (18) ≥ 0 from above.
Note that if there are multiple optima, the proof extends naturally to show that the highest

optimal effort in response to e12 must lie weakly below the lowest in response to e11.
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A.2 Proof of Proposition 3

Using (9) and (17),

∂EU2(e2, e1)
∂e2

=
v

2γ
+

λ2v(e2 − e1)
2γ2

− b− ce2; (22)

∂2EU2(e2, e1)
∂e2

2

=
λ2v

2γ2
− c. (23)

We assume that 2γ2c− λ2v > 0, so the objective function is strictly concave.
Suppose first that the action space A is continuous. The first-order condition gives the

following reaction function:

e∗2(e1) =





e if e1 < γv+λ2ve−2γ2(b+ce)
λ2v

γv−λ2ve1−2γ2b
2γ2c−λ2v

∈ [0, e] if e1 ∈
[

γv+λ2ve−2γ2(b+ce)
λ2v , γv−2γ2b

λ2v

]

0 if e1 > γv−2γ2b
λ2v

. (24)

Given λ2 > 0 and 2γ2c − λ2v > 0, in the interior de∗2
de1

is clearly strictly negative and strictly
decreasing in λ2 and v.

Suppose second that the action space A is discrete. Take any e2 ∈ A for which there exists
a higher effort which is a best response to some e1 ∈ [0, e] and a lower effort with the same
property. Let e+

2 be the next highest effort in A and let e−2 be the next lowest effort in A. Using
(9) and (17), EU2(e+

2 , e1)−EU2(e2, e1)

=
v(e+

2 − e2)
2γ

+ λ2v

(
(e+

2 − e1)2 − (e2 − e1)2

4γ2

)
− b(e+

2 − e2)− c((e+
2 )2 − e2

2)
2

(25)

=
(2γv − 4γ2b)(e+

2 − e2)
4γ2

+
(

λ2v − 2γ2c

4γ2

)
((e+

2 )2 − e2
2)−

(
λ2v

4γ2

)
2e1(e+

2 − e2). (26)

The cut-off e1 at which EU2(e+
2 , e1) = EU2(e2, e1) is given by

ĕ1(e+
2 , e2) =

2γv − 4γ2b

2λ2v
−

(
2γ2c− λ2v

λ2v

)(
e+
2 + e2

2

)
. (27)

Given λ2 > 0 and 2γ2c − λ2v > 0 by assumption, the cut-offs are strictly decreasing in the
Second Mover’s effort. From Proposition 2, best responses are (weakly) falling in e1. Thus if e1

was continuous but e2 was discrete, the cut-offs would represent the points at which the Second
Mover’s reaction function jumped down. As both are discrete, the cut-offs define the Second
Mover’s reaction function in the interior: e2 is a best response for the Second Mover for and
only for any e1 ∈ [ĕ1(e+

2 , e2), ĕ1(e2, e
−
2 )] ∩ A. The range [ĕ1(e+

2 , e2), ĕ1(e2, e
−
2 )] is of size

ĕ1(e2, e
−
2 )− ĕ1(e+

2 , e2) =
(

2γ2c− λ2v

λ2v

)(
e+
2 − e−2

2

)
, (28)

which is strictly decreasing in λ2 and v.
That the cut-offs are strictly decreasing in e2 is the discrete case analogue of the reaction

function being strictly downward sloping in the continuous case. That the size of the ranges
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between the cut-offs is strictly decreasing in λ2 and v is the discrete case analogue of the reaction
function becoming strictly steeper in λ2 and v in the continuous case. Note also the functional
form similarity: supposing that the permitted e2’s increase in unit steps, e+

2 +e2

2 = e2 + 1
2 , so the

rate of change of ĕ1(e+
2 , e2) with respect to e2 is the inverse of the slope of the reaction function

in the continuous case.

B MSM: Further Details

B.1 Construction of Simulated Samples

The construction of each simulated sample is conditional on the First Mover efforts and prizes
observed in the actual sample. Additionally we make random draws which will later be used to
construct the unobservables appearing in the structural model. Specifically, for each simulated
sample s = 1, . . . , S we construct matrices of dimensions N ×1, N ×1 and N ×10, denoted Q1s,
Q2s and Q3s respectively. Each element of Q1s, Q2s and Q3s contains a random draw from
a standard uniform distribution. These matrices are held fixed throughout the estimation.19

Given a trial parameter vector θt, the effort choice of the nth Second Mover in the rth round of
the sth sample is determined as follows:

1. The Second Mover is assigned values of the unobservables λ2,n, µn and πn,r in accor-
dance with the distributional assumptions made in Section 4.3.1. Draws from the normal
distribution are found by transforming Q1s as follows:

λ2,n = λ̃2 + σλΦ−1(Q1s,n), (29)

where Φ−1 denotes the inverse of the standard normal distribution function. Draws from
the Weibull distribution are obtained by transforming Q2s and Q3s as follows:

µn = φµ(− ln(Q2s,n))1/ϕµ ; (30)

πn,r = φπ(− ln(Q3s,n,r))1/ϕπ . (31)

The values of the parameters λ̃2, σλ, ϕµ, ϕπ, φµ and φπ are obtained by extracting the
relevant elements of θt.

2. Given the assigned values of λ2,n, µn and πn,r and the remaining parameters of the cost of
effort function, b, κ and δr for r = 2, . . . , 10 as given by θt, the expected utility associated
with each feasible Second Mover effort is computed using (7), (9) and (13).

3. The Second Mover is assigned the effort choice corresponding to the highest expected
utility.

Steps 1-3 are repeated for each of the 10 rounds, the N Second Movers and the S simulated sam-
ples. Note that by comparing the expected utilities associated with each of the 49 feasible effort

19Thus as the trial parameter vector θt is adjusted the simulated samples vary only due to the change in θt and
not due to variation in the underlying random draws. This is necessary to ensure convergence of the estimation
routine (Stern, 1997).
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choices we fully account for the discreteness of effort. Additionally, the method of simulation
does not rely on the objective function being well behaved.

B.2 Asymptotic Properties and Numerical Methods

Under the conditions in Pakes and Pollard (1989), θ̂ is consistent and asymptotically normal.
Specifically, with S fixed,

√
N(θ̂ − θ) d−→ N

(
0,

S + 1
S

(
D′WD

)−1
D′WΩWD

(
D′WD

)−1
)

as N →∞, (32)

where Ω = Ncov(M) is the covariance matrix of the sample moments normalized by the sample
size, W = plim(WN ) and

D =
1
S

S∑

s=1

dMs(θt)
dθ′t

∣∣∣∣∣
θt=θ

. (33)

When implementing MSM, we use S = 30 simulated samples and therefore simulate 17700
pairings when using N = 59, and we estimate the weight matrix WN using 2000 bootstrapped
samples each containing N Second Movers sampled with replacement from the original sample.

The term 1
S

S∑
s=1

Ms(θt) appearing in J(θt) in (14) is not a continuous function of the parameter

vector θt as small changes in θt may cause discrete changes in some Second Movers’ optimal
effort choices. Consequently gradient and Hessian based optimization methods are unsuitable
for minimizing J(θt). Instead we use Simulated Annealing in the form suggested by Goffe et al.
(1994) to solve for the MSM estimates.

B.3 Moments and Goodness of Fit
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Observed Bootstrapped Fitted z Test for

Moment SD Moment Difference

SD(e2,n,r) 5.875 0.497 5.496 -0.760

Corr(e2,n,r, e2,n,r−1) 0.652 0.062 0.633 -0.307

Corr(e2,n,r, e2,n,r−2) 0.596 0.085 0.603 0.087

SD(e2,n,r − e2,n,r−1) 4.828 0.719 4.645 -0.255

Mean(e2,n,1) 21.763 0.784 21.602 -0.205

Mean(e2,n,2) 23.458 0.633 23.264 -0.305

Mean(e2,n,3) 24.831 0.650 24.933 0.158

Mean(e2,n,4) 25.203 0.585 25.360 0.268

Mean(e2,n,5) 25.119 0.737 24.927 -0.260

Mean(e2,n,6) 24.898 0.897 25.233 0.373

Mean(e2,n,7) 25.763 0.798 25.968 0.258

Mean(e2,n,8) 26.169 0.673 26.310 0.208

Mean(e2,n,9) 26.254 0.860 26.401 0.171

Mean(e2,n,10) 26.729 0.774 26.592 -0.177

Corr(e2,n,r, vn,r | e1,n,r, e1,n,rvn,r, RD, FE) 0.124 0.044 0.084 -0.905

Corr(e2,n,r, e1,n,r | vn,r, e1,n,rvn,r, RD, FE) 0.041 0.042 0.003 -0.916

Corr(e2,n,r, vn,re1,n,r | e1,n,r, vn,r, RD, FE) -0.095 0.047 -0.038 1.200

Pc17Corrn(e2,n,r, vn,r|e1,n,r, e1,n,rvn,r, RT ) -0.275 0.098 -0.179 0.975

Pc33Corrn(e2,n,r, vn,r|e1,n,r, e1,n,rvn,r, RT ) 0.033 0.079 0.043 0.124

Pc50Corrn(e2,n,r, vn,r|e1,n,r, e1,n,rvn,r, RT ) 0.222 0.071 0.212 -0.145

Pc66Corrn(e2,n,r, vn,r|e1,n,r, e1,n,rvn,r, RT ) 0.388 0.041 0.360 -0.675

Pc83Corrn(e2,n,r, vn,r|e1,n,r, e1,n,rvn,r, RT ) 0.469 0.051 0.523 1.051

Pc17Corrn(e2,n,r, e1,n,r|vn,r, e1,n,rvn,r, RT ) -0.328 0.052 -0.386 -1.118

Pc33Corrn(e2,n,r, e1,n,r|vn,r, e1,n,rvn,r, RT ) -0.218 0.061 -0.204 0.224

Pc50Corrn(e2,n,r, e1,n,r|vn,r, e1,n,rvn,r, RT ) 0.019 0.089 -0.027 -0.514

Pc66Corrn(e2,n,r, e1,n,r|vn,r, e1,n,rvn,r, RT ) 0.179 0.064 0.141 -0.585

Pc83Corrn(e2,n,r, e1,n,r|vn,r, e1,n,rvn,r, RT ) 0.361 0.064 0.350 -0.169

Pc17Corrn(e2,n,r, vn,re1,n,r|e1,n,r, vn,r, RT ) -0.194 0.080 -0.208 -0.175

Pc33Corrn(e2,n,r, vn,re1,n,r|e1,n,r, vn,r, RT ) 0.019 0.067 0.001 -0.268

Pc50Corrn(e2,n,r, vn,re1,n,r|e1,n,r, vn,r, RT ) 0.146 0.057 0.169 0.395

Pc66Corrn(e2,n,r, vn,re1,n,r|e1,n,r, vn,r, RT ) 0.298 0.068 0.305 0.101

Pc83Corrn(e2,n,r, vn,re1,n,r|e1,n,r, vn,r, RT ) 0.474 0.050 0.483 0.170

Mean(e2,n,r|e1,n,r<23∩vn,r<1.33) 23.821 0.867 24.121 0.346

Mean(e2,n,r|e1,n,r<23∩vn,r>2.55) 25.485 0.814 25.595 0.135

Mean(e2,n,r|e1,n,r>28∩vn,r<1.33) 25.836 0.975 25.265 -0.586

Mean(e2,n,r|e1,n,r>28∩vn,r>2.55) 25.050 1.208 25.665 0.509

Prop(e2,n,r < 15) 0.029 0.010 0.033 0.401

Prop(e2,n,r > 35) 0.015 0.008 0.017 0.206

Notes: See Table 4 for a description of the moments. Observed moments are computed
from the sample and fitted moments are computed using parameter estimates from the
preferred specification.

Table 5: Goodness of fit of the preferred specification.
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C Experimental Instructions

Please open the brown envelope you have just collected. I am reading from the four page
instructions sheet which you will find in your brown envelope. [Open brown envelope]

Thank you for participating in this session. There will be a number of pauses for you to ask
questions. During such a pause, please raise your hand if you want to ask a question. Apart
from asking questions in this way, you must not communicate with anybody in this room. Please
now turn off mobile phones and any other electronic devices. These must remain turned off for
the duration of this session. Are there any questions?

You have been allocated to a computer booth according to the number on the card you
selected as you came in. You must not look into any of the other computer booths at any time
during this session. As you came in you also selected a white sealed envelope. Please now open
your white envelope. [Open white envelope]

Each white envelope contains a different four digit Participant ID number. To ensure
anonymity, your actions in this session are linked to this Participant ID number and at the
end of this session you will be paid by Participant ID number. You will be paid a show up fee
of £4 together with any money you accumulate during this session. The amount of money you
accumulate will depend partly on your actions, partly on the actions of others and partly on
chance. All payments will be made in cash in another room. Neither I nor any of the other
participants will see how much you have been paid. Please follow the instructions that will
appear shortly on your computer screen to enter your four digit Participant ID number. [Enter
four digit Participant ID number] Please now return your Participant ID number to its
envelope, and keep this safe as your Participant ID number will be required for payment at the
end.

This session consists of 2 practice rounds, for which you will not be paid, followed by 10
paying rounds with money prizes. In each round you will undertake an identical task lasting
120 seconds. The task will consist of a screen with 48 sliders. Each slider is initially positioned
at 0 and can be moved as far as 100. Each slider has a number to its right showing its current
position. You can use the mouse in any way you like to move each slider. You can readjust
the position of each slider as many times as you wish. Your “points score” in the task will be
the number of sliders positioned at exactly 50 at the end of the 120 seconds. Are there any
questions?

Before the first practice round, you will discover whether you are a “First Mover” or a
“Second Mover”. You will remain either a First Mover or a Second Mover for the entirety of
this session.

In each round, you will be paired. One pair member will be a First Mover and the other
will be a Second Mover. The First Mover will undertake the task first, and then the Second
Mover will undertake the task. The Second Mover will see the First Mover’s points score before
starting the task.

In each paying round, there will be a prize which one pair member will win. Each pair’s
prize will be chosen randomly at the beginning of the round and will be between £0.10 and
£3.90. The winner of the prize will depend on the difference between the First Mover’s and the
Second Mover’s points scores and some element of chance. If the points scores are the same,
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each pair member will have a 50% chance of winning the prize. If the points scores are not the
same, the chance of winning for the pair member with the higher points score increases by 1
percentage point for every increase of 1 in the difference between the points scores, while the
chance of winning for the pair member with the lower points score correspondingly decreases
by 1 percentage point. The table at the end of these instructions gives the chance of winning
for any points score difference. Please look at this table now. [Look at table] Are there any
questions?

During each task, a number of pieces of information will appear at the top of your screen,
including the time remaining, the round number, whether you are a First Mover or a Second
Mover, the prize for the round and your points score in the task so far. If you are a Second
Mover, you will also see the points score of the First Mover you are paired with.

After both pair members have completed the task, each pair member will see a summary
screen showing their own points score, the other pair member’s points score, their probability
of winning, the prize for the round and whether they were the winner or the loser of the round.

We will now start the first of the two practice rounds. In the practice rounds, you will be
paired with an automaton who behaves randomly. Before we start, are there any questions?
Please look at your screen now. [First practice round] Before we start the second practice
round, are there any questions? Please look at your screen now. [Second practice round]
Are there any questions?

The practice rounds are finished. We will now move on to the 10 paying rounds. In every
paying round, each First Mover will be paired with a Second Mover. The pairings will be changed
after every round and pairings will not depend on your previous actions. You will not be paired
with the same person twice. Furthermore, the pairings are done in such a way that the actions
you take in one round cannot affect the actions of the people you will be paired with in later
rounds. This also means that the actions of the person you are paired with in a given round
cannot be affected by your actions in earlier rounds. (If you are interested, this is because you
will not be paired with a person who was paired with someone who had been paired with you,
and you will not be paired with a person who was paired with someone who had been paired
with someone who had been paired with you, and so on.) Are there any questions?

We will now start the 10 paying rounds. There will be no pauses between the rounds.
Before we start the paying rounds, are there any remaining questions? There will be no further
opportunities to ask questions. Please look at your screen now. [10 paying rounds]

The session is now complete. Your total cash payment, including the show up fee, is displayed
on your screen. Please leave the room one by one when asked to do so to receive your payment.
Remember to bring the envelope containing your four digit Participant ID number with you but
please leave all other materials on your desk. Thank you for participating.
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Difference in Chance of winning prize Chance of winning prize
points scores for Mover with higher score for Mover with lower score

0 50% 50%

1 51% 49%

2 52% 48%

3 53% 47%

4 54% 46%

5 55% 45%

6 56% 44%

7 57% 43%

8 58% 42%

9 59% 41%

10 60% 40%

11 61% 39%

12 62% 38%

13 63% 37%

14 64% 36%

15 65% 35%

16 66% 34%

17 67% 33%

18 68% 32%

19 69% 31%

20 70% 30%

21 71% 29%

22 72% 28%

23 73% 27%

24 74% 26%

25 75% 25%

26 76% 24%

27 77% 23%

28 78% 22%

29 79% 21%

30 80% 20%

31 81% 19%

32 82% 18%

33 83% 17%

34 84% 16%

35 85% 15%

36 86% 14%

37 87% 13%

38 88% 12%

39 89% 11%

40 90% 10%

41 91% 9%

42 92% 8%

43 93% 7%

44 94% 6%

45 95% 5%

46 96% 4%

47 97% 3%

48 98% 2%

49 Not possible as there are only 48 sliders

50 Not possible as there are only 48 sliders

Table 6: Chance of winning in a given round.
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